Skip to main content

3D Printing Gives Flight to Humanitarian Efforts


Stratasys Direct Manufacturing teamed with Structural Integrity Engineering to further efforts on the latest Flying Eye Hospital for Orbis. Orbis, an organization dedicated to providing ophthalmic training to communities around the world, utilizes airborne training facilities called Flying Eye Hospitals. Orbis’s goal is to eliminate unnecessary blindness, of which 39 million people around the global suffer from needlessly. In order to heal blindness, the Orbis team performs eye surgeries and educates doctors in the proper execution of eye surgeries through two-way audio-visual links. To aid and instruct as many people as possible, Orbis’ entire hospital and training facility is housed on a converted MD-10 aircraft. To further their efforts, Orbis began the process of building a new airborne hospital by reaching out to Structural Integrity Engineering, who then sought out Stratasys Direct Manufacturing for help manufacturing an air duct.

Structural Integrity Engineering (SIE) is an aerospace company that re-designs, re-builds and re-claims old and unused aircraft. One of the more complex components needed for new Flying Eye Hospital project was an air duct required to conform to certain curvatures as well as meet all FAA requirements for airflow. Its purpose is to filter air between the cockpit and the operating rooms. SIE chose to use a 3D Printing process to produce the air duct.

Mark Curran, Senior Engineer at SIE, has been working with additive manufacturing (3D Printing) processes for years, but always as a way to prototype and test out new parts using Stereolithography (SL). During design and form and fit testing, Curran and his team realized that traditional methods of manufacturing ducts would not be ideal for the geometry of the air duct needed on the Orbis plane.



“We had done work with Stratasys Direct Manufacturing in the past because 3D printing processes are very viable for complex fitting and design, which would normally cost quite a bit if machined,” says Curran. “In discussing our needs with Stratasys Direct Manufacturing Engineer Jesse, he informed me that Stratasys Direct Manufacturing has material that is FAA compliant for smoke and burn regulations. We received samples of the material, ULTEM, and did secondary burn tests. To pass, the samples have to extinguish by themselves within a certain amount of time. The ULTEM pieces passed the test.”

ULTEM is a thermoplastic material that has been engineered to meet very harsh environments, which is why the material has become widely used in the production of large vehicles such as automotives, industrial equipment and aircraft. “We took what we normally would’ve done in fiberglass and shifted our approach,” says Curran. Instead of fiberglass, Curran and his team chose to use 3D Printing process Fused Deposition Modeling (FDM)coupled with the tan ULTEM material that worked so well for the team during testing. “We were able to design mounting feature attachment fittings into the actual part. The mounting features are usually separate. By designing them into the FDM ULTEM component, we were able to reduce our overall part count, which is always a good thing.” The success of the 3D Printed material and the ability of the process to consolidate parts was met with a lot of enthusiasm from Curran’s team.



FDM is an additive manufacturing process and works similar to a hot glue gun, extruding thermoplastics varying in degrees of durability, layer by layer, until a final product is achieved. The process, as Curran explained, allows for multiple features to be built into the actual completed product, opening up possibilities for designers to program-in virtually any feature they require. Had Curran and his team manufactured the duct using fiberglass, the machined mold and lay-up process would have taken weeks; with FDM, the team was able to receive their part in a matter of days, and should they need a replacement or an extra part, the team could receive multiple parts in just a few days.

Stratasys Direct Manufacturing proudly took on responsibility for ensuring the duct met FAA airworthiness certifications. Building a part that would be required to function on an actual aircraft (versus a prototype or non-critical part) required vigorous inspection by the FAA. The FAA sent two representatives to Stratasys Direct Manufacturing to test and certify the design and build of the air duct. First, a Designated Engineering Representative (DER), who is commissioned by the FAA and carries a legal license for engineering, visited Stratasys Direct Manufacturing to verify the design of the duct would meet airworthiness requirements. A Designated Airworthiness Representative (DAR), who inspects the part to ensure everything was built correctly and that the process used meets all airworthiness requirements, visited once the duct had been built. “Being responsible for FAA certifications opened our eyes to what additive manufacturing can accomplish,” stated Stratasys Direct Manufacturing’s Project Engineer Jesse Marin. “We’ve always been dedicated to internal research, and improving manufacturing processes, and I think it really paid off in this project.” Stratasys Direct Manufacturing successfully received an 8130 certification for their additive manufactured duct.


The Orbis team has never before used a 3D Printed unit on one of their Flying Eye Hospitals. The completed duct is 30” x 12.08” by 17.65” with a volume of 139.21.

An earlier prototype of the air duct has been awarded a place in the National Additive Manufacturing Innovation Institute (NAMII) in Washington, D.C., to display the capabilities of 3D Printing and transfer those visionary and realistic ideas to the mainstream U.S. manufacturing sector.

Jack Mc Hal, MD 10 Program Director of Orbis International, commented that their objective “is to build the most sophisticated, technologically advanced, state of the art, gold standard hospital platform”; Stratasys Direct Manufacturing’s additive manufacturing was able to meet those standards.

Direct 3D Printing services is available in Australia and New Zealand from Objective3D Service Bureau. Objective3D Service Bureau provides 3D printing and custom manufacturing through the the largest additive manufacturing centre in the southern hemisphere - Objective3D Advanced Manufacturing Centre, powered by Stratasys Direct Manufacturing with 16 commercial grade machines provides the widest range of 3D printing technologies and materials to enable a broad range of specialist solutions.

Try out our INSTANT ONLINE QUOTE or for more details, visit www.objective3d.com.au or call 03-9785 2333 (AUS)  09-801 0380 (NZ)

Popular posts from this blog

Delivering High Quantities of Prototypes Fast

Objective3D Direct Manufacturing produces parts using a range of additive and conventional manufacturing technologies. We offer tailored solutions for your project’s needs. If your project requires larger quantities of small parts – fast, Laser Sintering is the best technological solution for you. Per-part pricing is reduced as quantities increase, but there are more advantages to using Laser Sintering for small prototypes than price alone. Laser Sintering (LS) provides strong, versatile and geometrically intricate components made from filled and un-filled nylon materials that are ideal for fit and form verification and functional testing. Prototypes made with LS are created quickly and offer robust solutions for your project. FAST Delivery Laser Sintering can provide sturdy, functional prototypes as little as 24 hours. Multi-component designs can be incorporated into single structures, allowing engineers to produce complex features and geometries in one print, and elim

How Artec Space Spider helps measure the shape-shifting of birds in response to climate change.

Challenge:  In the past century, researchers have been studying a variety of birds in Australia to see how their bodies have changed as a result of global warming in order to determine how to adjust. In order to document the exact dimensions of thousands of beaks of 86 different species of birds in museums in a fast, accurate, and convenient manner, they needed a fast, accurate, and convenient method. Solution: Artec Space Spider, Artec Studio Results: By using the handheld 3D scanner Artec Space Spider, each bird can be scanned in submillimeter colour 3D in approximately two minutes. This makes it easy to scan anywhere from 30-50 birds in one museum visit. Scan processing takes just under six minutes for each bird. PhD candidate Sara Ryding 3D scanning an Australian galah (Eolophus roseicapilla) with Artec Space Spider (image credit: Sara Ryding) One of the most startling impacts of global warming has taken place for decades now: multiple species of birds around the world have been

3D scanning and reverse engineering streamline original furniture design and production

MU Form Furniture Design is an Oakland-based company that designs, manufactures and distributes furniture products for the modern home and business. The company is never short of orders since good and original design is sought after by architects and interior designers. The main material MU Form works with is high-quality bent ply, which is one of the most widely used materials in this industry due to its ability to create a variety of shapes for chairs, stools, and tables. The company’s specialists seek to create great designs that pose a challenge for other manufacturers to copy or replicate. The V Dining Chair in red and grey, designed by MU Form’s Po Shun Leong. “Our designers are tasked to develop furniture designs that require a significant amount of trial and error by developing physical prototypes of chairs and stools,” says Mark Leong, CEO of MU Form. To produce a new original piece of furniture, MU Form would normally ship a physical prototype model to a factory