Skip to main content

7 Questions to Ask Yourself When Choosing a 3D Printing Technology and Material

Additive metals, laser sintering, extruded filament, powdered plastics, alloys, photopolymers – the list goes on and on. Today there are a plethora of 3D printing processes and materials to choose from and it’s only growing. The dynamic additive manufacturing market is often difficult to navigate, especially if you’re still learning about the processes. To help you start to filter out certain processes and materials, the application engineers at Stratasys Direct Manufacturing has put together a selection methodology:

Application – What is the purpose of the end product? You may need to build a small volume of complex end-use parts which would require strong materials, dimensional accuracy and repeatability. Whereas a sacrificial investment casting pattern is one-time use and needs to burnout clean.

Function – What does the part need to do? It may just serve aesthetic purposes in which it just needs to look and feel like an end-use part. Or perhaps you have a hard-working part that needs to hinge, snap, or bear a load which requires an accurate process and stronger materials.

Stability – Where does the part need to function? For example, holding up and maintaining strength in high temperatures rules out a lot of processes and materials. Does it need to function outdoors? In that case you would need a UV-stable material. Will the part interact with the human body? Then your application requires a biocompatible material.

Durability – How long does the part need to last? Consider the number of use cycles and the application duration. For example, a mold or tool may need to go through hundreds of cycles and prolonged friction, but may only need to last a week for prototyping. Some 3D printing materials are very functional over a short period of time and others can maintain mechanical properties for years.

Aesthetics – How does the part need to look and feel? Photopolymer processes, such Stereolithography (SL) and PolyJet, can produce smooth parts right off of the machine, but aren’t the most stable and durable materials. While thermoplastic and powdered plastic processes like Laser Sintering (LS) and Fused Deposition Modeling (FDM) can create stronger and more durable parts, they often require finishing processes to achieve a smooth surface.

Economics – What is your budget and timeline? If you have a set budget and need to get a part for X amount, then your decision will weigh on price more than value. Time and quality can often contradict one another as well – if you need a quick-turnaround, it may be at the expense of a certain level of quality. However we have found ways to reduce lead time and cost without sacrificing quality, including batching, nesting, scaling, sectioning, shelling, ID-Light builds and adjusting orientation to reduce material consumption.

Priorities – What is the most important decision-making factor? Consider the primary objective and ultimate project goals. Often there are multiple, but your main priorities should drive your decision tree and filter the 3D printing technology and material options.

Here are some examples of how we have put this methodology to use with our customers:

Archie Handheld Studios

Application:       Investment cast metal trophy
Function:             Burned out pattern
Stability:              The pattern needed to hold shape and be water-tight
Durability:          One-time use
Aesthetics:         The pattern had to be completely smooth for the casting process
Economics:         Cost wasn’t a concern, but there was a short three week timeline
Priorities:            Surface finish and speed
Selection:           Stereolithography Investment Casting Pattern out of SC 1000

Read the full story:

NASA JPL Satellite Parts

Application:       Satellite antenna array
Function:             Holds radio antenna wires
Stability:              Exposure to extreme temperatures in outer space, and pressure and vibration on the space shuttle
Durability:          Indefinite lifespan
Aesthetics:         The parts had to be compatible with a protective paint
Economics:         The customer reduced lead time by consolidating multiple assemblies into one part design
Priority:               Stability
Selection:           Fused Deposition Modeling (FDM) and ULTEM 9085

Read the full story: 

Choosing the right additive manufacturing technology and material for your application is critical to part performance and results. The main thing to remember is “one-size-fits-all” doesn’t apply to additive manufacturing. It’s imperative to know the pros and cons of each process and material or partner with an expert who does. Asking yourself these qualifying questions will help you start to navigate the dynamic market.

Resource: Stratasys Direct Manufacturing Blog

Popular posts from this blog

Delivering High Quantities of Prototypes Fast

Objective3D Direct Manufacturing produces parts using a range of additive and conventional manufacturing technologies. We offer tailored solutions for your project’s needs. If your project requires larger quantities of small parts – fast, Laser Sintering is the best technological solution for you. Per-part pricing is reduced as quantities increase, but there are more advantages to using Laser Sintering for small prototypes than price alone.

Laser Sintering (LS) provides strong, versatile and geometrically intricate components made from filled and un-filled nylon materials that are ideal for fit and form verification and functional testing. Prototypes made with LS are created quickly and offer robust solutions for your project.
FAST Delivery Laser Sintering can provide sturdy, functional prototypes as little as 24 hours. Multi-component designs can be incorporated into single structures, allowing engineers to produce complex features and geometries in one print, and eliminating the need…

3D scanning and reverse engineering streamline original furniture design and production

MU Form Furniture Design is an Oakland-based company that designs, manufactures and distributes furniture products for the modern home and business. The company is never short of orders since good and original design is sought after by architects and interior designers.

The main material MU Form works with is high-quality bent ply, which is one of the most widely used materials in this industry due to its ability to create a variety of shapes for chairs, stools, and tables.

The company’s specialists seek to create great designs that pose a challenge for other manufacturers to copy or replicate.

“Our designers are tasked to develop furniture designs that require a significant amount of trial and error by developing physical prototypes of chairs and stools,” says Mark Leong, CEO of MU Form.

To produce a new original piece of furniture, MU Form would normally ship a physical prototype model to a factory overseas so they reverse engineer the model by using a router duplicator to create a …

Commodore Ute to US: 100,000 votes needed!

According to The Age Drive and an article by Barry Park, we are again set to export our Commodore Ute to the US.

The article is as follows:

US website rallies to GM's Twitter call of 'If you ask for an El Camino ute, we'll do it'.

An off-the-cuff quip from General Motors' newly appointed chief marketing officer could be just the thing to help Holden's cause to sell the Commodore ute in the US.

Joel Ewanick, who made the jump from Hyundai to the US car maker late last year, recently joined the social networking service Twitter. He soon started interacting with Chevrolet fans, with many of them asking for the car maker to re-introduce a vehicle based on a cross between a truck (ute) and a car.

In response to one passionate request for a new-age El Camino, Ewanick wrote: ''Well, we need you and 100,000 more of your best friends.''

Advertisement: Story continues below That was enough for US motoring website Jalopnik, which is now on a campaign to collect…