Skip to main content

Stratasys PolyJet Multi-Material 3D Printing

OVERVIEW
For the few products made of one material and color, prototyping and production can be a one-step process. However, most products are assemblies, comprised of several parts that are typically made from different materials, in more than one color (Figure 1). Each part must be individually machined, molded or cast in the desired material and color and then assembled together. Painting and decorative operations may also be necessary to complete the product.

Figure 1: 
3D printed calculator with a rigid housing, clear display and soft- touch keys with printed characters.

APPLICATION OUTLINE
Multi-material 3D printing creates prototypes that simulate final- production parts in a single operation, which improves functional evaluations and overall appearance. Using PolyJet™ Connex™ technology, a single part can have a variety of mechanical properties, colors and levels of opacity and durometer. This unique technology is fast and efficient when creating prototypes with features that exemplify the finished product (Figure 2). PolyJet technology is a 3D printing process (additive manufacturing) that builds objects layer by layer, from computer aided design (CAD) files, by jetting tiny droplets of liquid photopolymers. With PolyJet ’s Connex family of 3D printers, two or three materials are jetted simultaneously and often blended to create digital materials.

Figure 2: 
3D printed glasses with clear lenses and a multi-colored frame.

The blended digital materials combine to deliver a wide range of material characteristics. Some blends mimic ABS plastic, while others simulate rubbers with different Shore A values. Digital materials also combine transparent and colored materials to alter appearances. For example, Connex 3D Printers offer more than 1,000 color options from an inventory of just 22 base materials (Figure 3). This provides designers and engineers with a single- operation prototyping option for parts that would otherwise require multiple fabrication steps.

Figure 3: 
Connex 3D Printers offers 20 color palettes for rigid and flexible materials.

Multi-material 3D printing reduces the time, effort and expense in the production and evaluation of products that combine multiple properties such as rigid, rubber-like, overmolded, and colored features (Figure 4). It also increases utilization and cost- effectiveness of the 3D printer by reducing downtime for material changeovers and increases the variety of material characteristics in parts produced in a single build (Figure 5).

 
Figure 4: Overmolded, multi-colored razor handles.   
 Figure 5: Multi-material printing

CUSTOMER STORY
Engineers and designers at Trek Bicycle in Waterloo, Wisconsin, are obsessed with continually improving their products. Trek’s prototyping lab was among the first to adopt the Objet ® 500 Connex3™ 3D Printer, an advanced, color, multi-material 3D printer using PolyJet technology. It creates prototypes that look and feel like production parts, with more material options and more uptime than ever before.

Engineers at Trek embraced multi-materials to integrate soft, rubber-like components into models built with durable Digital ABS™, one of the digital materials available with Connex3 3D Printers. This is important because many bicycle parts contain both soft and rigid materials. Prior to using Connex3 technology, engineers had to build these parts in separate jobs, swapping out 3D printing materials in between, and then bond the components together. The alternative was to make parts in one print job, but with less-than-optimal material characteristics.

“It ’s important for our prototype parts to look and feel like production parts,” says Mike Zeigle, manager of Trek’s prototype development group. Accessories like handlebar grips and chain guards require the same realism for fit and function testing (Figure 6). Multi-material 3D printing gives Trek’s designers the ability to quickly develop prototype parts with all of the desired characteristics of final-production parts.

Figure 6: Durable Digital ABS chain guard with rubber-like components made in one print job.

Trek’s engineers also use multi-material 3D printing to communicate through color. The product development team was able to translate finite-element analysis data into a physical 3D color map of a bike seat showing the pressure a rider puts on specific areas of the seat (Figure 7). This lets designers actually “see” these pressure points, allowing them to decide where to put high-density foam for a better-performing seat.

Figure 7: Color map model shows the pressure that a rider puts on the seat.

The ability to 3D print parts with different material properties in multiple colors gives Trek Bicycle faster prototyping capabilities as well as more descriptive concept communications.


Source: Stratasys Application Brief

Popular posts from this blog

Delivering High Quantities of Prototypes Fast

Objective3D Direct Manufacturing produces parts using a range of additive and conventional manufacturing technologies. We offer tailored solutions for your project’s needs. If your project requires larger quantities of small parts – fast, Laser Sintering is the best technological solution for you. Per-part pricing is reduced as quantities increase, but there are more advantages to using Laser Sintering for small prototypes than price alone. Laser Sintering (LS) provides strong, versatile and geometrically intricate components made from filled and un-filled nylon materials that are ideal for fit and form verification and functional testing. Prototypes made with LS are created quickly and offer robust solutions for your project. FAST Delivery Laser Sintering can provide sturdy, functional prototypes as little as 24 hours. Multi-component designs can be incorporated into single structures, allowing engineers to produce complex features and geometries in one print, and elim

How Artec Space Spider helps measure the shape-shifting of birds in response to climate change.

Challenge:  In the past century, researchers have been studying a variety of birds in Australia to see how their bodies have changed as a result of global warming in order to determine how to adjust. In order to document the exact dimensions of thousands of beaks of 86 different species of birds in museums in a fast, accurate, and convenient manner, they needed a fast, accurate, and convenient method. Solution: Artec Space Spider, Artec Studio Results: By using the handheld 3D scanner Artec Space Spider, each bird can be scanned in submillimeter colour 3D in approximately two minutes. This makes it easy to scan anywhere from 30-50 birds in one museum visit. Scan processing takes just under six minutes for each bird. PhD candidate Sara Ryding 3D scanning an Australian galah (Eolophus roseicapilla) with Artec Space Spider (image credit: Sara Ryding) One of the most startling impacts of global warming has taken place for decades now: multiple species of birds around the world have been

3D scanning and reverse engineering streamline original furniture design and production

MU Form Furniture Design is an Oakland-based company that designs, manufactures and distributes furniture products for the modern home and business. The company is never short of orders since good and original design is sought after by architects and interior designers. The main material MU Form works with is high-quality bent ply, which is one of the most widely used materials in this industry due to its ability to create a variety of shapes for chairs, stools, and tables. The company’s specialists seek to create great designs that pose a challenge for other manufacturers to copy or replicate. The V Dining Chair in red and grey, designed by MU Form’s Po Shun Leong. “Our designers are tasked to develop furniture designs that require a significant amount of trial and error by developing physical prototypes of chairs and stools,” says Mark Leong, CEO of MU Form. To produce a new original piece of furniture, MU Form would normally ship a physical prototype model to a factory