Skip to main content

Additive Manufacturing: Tools without Tooling

How Additive Manufacturing is changing the way we make ... Everything 

ST_Tools-without-tooling_final (1)


Additive Manufacturing (AM) has been called the Next Industrial Revolution, improving virtually every aspect of the way products are made. Additive manufacturing is a key component of Direct Digital Manufacturing which generally describes the process of producing parts directly from digital CAD data.

Normally DDM stories tend to focus on end use parts, where additive manufacturing is used to cost-effectively produce the final parts that go into your car, jetliner or coffee maker. Describing its potential impact, the Wohlers Report 2014 states, ”Most indications suggest that we are heading toward a relatively new method of manufacturing and an industry worth tens of billions of dollars.”

One area of additive manufacturing that can have an equally significant impact is tools – the molds, patterns, jigs and fixtures that are used throughout the manufacturing and assembly processes.

Just think how many products you come in contact with every day that have been produced with injection molding, blow molding, silicone-molding and sand-casting…or assembled using jigs and fixtures. A long-standing method of creating these tools and patterns relies on time-consuming subtractive processes such as CNC tooling using steel or aluminum. But the advent of additive manufacturing and 3D printing means that tools can be created essentially without tooling – direct from digital 3D CAD files.  The benefits are numerous, from accelerated time to market to drastically reduced production costs, from the elimination of wasted materials to the ability to create tools on demand.

The Future of Manufacturing is Here

DDM therefore has the potential to change the landscape and economies of manufacturing as we know it. 3D printed molds and tools enable product designs to be inexpensively functionally tested in their final materials…and refined, before being mass produced. And tools and molds can be 3D printed in literally a matter of hours, compared to weeks for CNC equivalents.

Comparison of additive and conventional
manufacturing resources for tool production.
Source: Stratasys

For jigs and fixtures, DDM is a manufacturing dream come true. With DDM, assembly tools can be easily created to meet exact user specifications – then tested, tweaked and reprinted until perfection. Equally exciting, the precise tool required can be 3D printed on demand within hours, streamlining the manufacturing process and eliminating the need for tool inventory. Imagine how this will positively affect workflows and profits. If a jig or fixture breaks, no problem. You don’t shut down assembly, you just 3D print a new one!

3d printing, tools, fortus
Fixture assembly tool
produced by BMW
using a Fortus 3D
Production System
from Stratasys
Matt Hlavin, CEO, Thogus, explains “We can take a 3D geometry and 3D print an end of arm tool that weighs 70–90% less, in less than 24 hours. And if the design doesn’t work, we can tweak the CAD file and reprint it again.“Here’s another great example: vacuum cleaner legend, Oreck created a custom fixture using Stratasys FDM-based 3D printing technology for use in its inspection of injection molded parts before they’re  mass produced. The result is the Quality Control process that previously took a month to complete can now be done in one day! And Oreck can now create customized fixtures that are specifically designed to quickly and perfectly position each First Article for testing.

For more information or to see how 3D Printing could benefit your business, call Objective3D on (03) 9785 2333 or visit www.objective3d.com.au.

Popular posts from this blog

Delivering High Quantities of Prototypes Fast

Objective3D Direct Manufacturing produces parts using a range of additive and conventional manufacturing technologies. We offer tailored solutions for your project’s needs. If your project requires larger quantities of small parts – fast, Laser Sintering is the best technological solution for you. Per-part pricing is reduced as quantities increase, but there are more advantages to using Laser Sintering for small prototypes than price alone. Laser Sintering (LS) provides strong, versatile and geometrically intricate components made from filled and un-filled nylon materials that are ideal for fit and form verification and functional testing. Prototypes made with LS are created quickly and offer robust solutions for your project. FAST Delivery Laser Sintering can provide sturdy, functional prototypes as little as 24 hours. Multi-component designs can be incorporated into single structures, allowing engineers to produce complex features and geometries in one print, and elim

How Artec Space Spider helps measure the shape-shifting of birds in response to climate change.

Challenge:  In the past century, researchers have been studying a variety of birds in Australia to see how their bodies have changed as a result of global warming in order to determine how to adjust. In order to document the exact dimensions of thousands of beaks of 86 different species of birds in museums in a fast, accurate, and convenient manner, they needed a fast, accurate, and convenient method. Solution: Artec Space Spider, Artec Studio Results: By using the handheld 3D scanner Artec Space Spider, each bird can be scanned in submillimeter colour 3D in approximately two minutes. This makes it easy to scan anywhere from 30-50 birds in one museum visit. Scan processing takes just under six minutes for each bird. PhD candidate Sara Ryding 3D scanning an Australian galah (Eolophus roseicapilla) with Artec Space Spider (image credit: Sara Ryding) One of the most startling impacts of global warming has taken place for decades now: multiple species of birds around the world have been

3D scanning and reverse engineering streamline original furniture design and production

MU Form Furniture Design is an Oakland-based company that designs, manufactures and distributes furniture products for the modern home and business. The company is never short of orders since good and original design is sought after by architects and interior designers. The main material MU Form works with is high-quality bent ply, which is one of the most widely used materials in this industry due to its ability to create a variety of shapes for chairs, stools, and tables. The company’s specialists seek to create great designs that pose a challenge for other manufacturers to copy or replicate. The V Dining Chair in red and grey, designed by MU Form’s Po Shun Leong. “Our designers are tasked to develop furniture designs that require a significant amount of trial and error by developing physical prototypes of chairs and stools,” says Mark Leong, CEO of MU Form. To produce a new original piece of furniture, MU Form would normally ship a physical prototype model to a factory